Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.282
Filtrar
1.
J Morphol ; 284(3): e21559, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36688403

RESUMO

Vertebrate paired appendages are one of the most important evolutionary novelties in vertebrates. During embryogenesis, the skeletal elements of paired appendages differentiate from the somatic mesoderm, which is a layer of lateral plate mesoderm. However, the presence of the somatic mesoderm in the common ancestor of vertebrates has been controversial. To address this problem, it is necessary but insufficient to understand the developmental process of lateral plate mesoderm formation in lamprey (jawless vertebrates) embryos. Here, I show the presence of the somatic mesoderm in lamprey (Lethenteron camtschaticum) embryos using plastic sectioning and transmission electron microscopy analysis. During the early pharyngeal stages, the somatic mesoderm transforms from the lateral plate mesoderm in the trunk region. Soon after, when the cardiac structures were morphologically distinct, the somatic mesoderm was recognized through the cardiac to more caudal regions. These findings indicated that the somatic mesoderm evolved before the emergence of paired appendages. I also discuss the developmental changes in the body wall organization in the common ancestor of vertebrates, which is likely related to the evolution of the paired appendages.


Assuntos
Evolução Biológica , Lampreias , Mesoderma , Animais , Desenvolvimento Embrionário , Lampreias/anatomia & histologia , Lampreias/embriologia , Mesoderma/embriologia , Mesoderma/ultraestrutura , Vertebrados/anatomia & histologia , Vertebrados/embriologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/ultraestrutura
2.
Proc Natl Acad Sci U S A ; 119(28): e2118938119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35867760

RESUMO

The vertebrate inner ear arises from a pool of progenitors with the potential to contribute to all the sense organs and cranial ganglia in the head. Here, we explore the molecular mechanisms that control ear specification from these precursors. Using a multiomics approach combined with loss-of-function experiments, we identify a core transcriptional circuit that imparts ear identity, along with a genome-wide characterization of noncoding elements that integrate this information. This analysis places the transcription factor Sox8 at the top of the ear determination network. Introducing Sox8 into the cranial ectoderm not only converts non-ear cells into ear progenitors but also activates the cellular programs for ear morphogenesis and neurogenesis. Thus, Sox8 has the unique ability to remodel transcriptional networks in the cranial ectoderm toward ear identity.


Assuntos
Orelha Interna , Ectoderma , Regulação da Expressão Gênica no Desenvolvimento , Fatores de Transcrição SOXE , Animais , Orelha Interna/embriologia , Ectoderma/embriologia , Fatores de Transcrição SOXE/fisiologia , Crânio , Vertebrados/embriologia
3.
Science ; 374(6572): abg1727, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34855481

RESUMO

The primitive streak, a transient embryonic structure, marks bilateral symmetry in mammalian and avian embryos and helps confer anterior-posterior and dorsal-ventral spatial information to early differentiating cells during gastrulation. Its recapitulation in vitro may facilitate derivation of tissues and organs with in vivo­like complexity. Proper understanding of the primitive streak and what it entails in human development is key to achieving such research objectives. Here we provide an overview of the primitive streak and conclude that this structure is neither conserved nor necessary for gastrulation or early lineage diversification. We offer a model in which the primitive streak is viewed as part of a morphologically diverse yet molecularly conserved process of spatial coordinate acquisition. We predict that recapitulation of the primitive streak is dispensable for development in vitro.


Assuntos
Embrião de Mamíferos/fisiologia , Embrião não Mamífero/fisiologia , Gastrulação , Linha Primitiva/fisiologia , Vertebrados/embriologia , Animais , Evolução Biológica , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/citologia , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/citologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Morfogênese , Filogenia
4.
Nat Commun ; 12(1): 6094, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667153

RESUMO

Zygotic genome activation (ZGA) initiates regionalized transcription underlying distinct cellular identities. ZGA is dependent upon dynamic chromatin architecture sculpted by conserved DNA-binding proteins. However, the direct mechanistic link between the onset of ZGA and the tissue-specific transcription remains unclear. Here, we have addressed the involvement of chromatin organizer Satb2 in orchestrating both processes during zebrafish embryogenesis. Integrative analysis of transcriptome, genome-wide occupancy and chromatin accessibility reveals contrasting molecular activities of maternally deposited and zygotically synthesized Satb2. Maternal Satb2 prevents premature transcription of zygotic genes by influencing the interplay between the pluripotency factors. By contrast, zygotic Satb2 activates transcription of the same group of genes during neural crest development and organogenesis. Thus, our comparative analysis of maternal versus zygotic function of Satb2 underscores how these antithetical activities are temporally coordinated and functionally implemented highlighting the evolutionary implications of the biphasic and bimodal regulation of landmark developmental transitions by a single determinant.


Assuntos
Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Fatores de Transcrição/metabolismo , Vertebrados/embriologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Cromatina/genética , Cromatina/metabolismo , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/genética , Fatores de Transcrição/genética , Transcriptoma , Vertebrados/genética , Vertebrados/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Zigoto/metabolismo
5.
Cells ; 10(8)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34440915

RESUMO

Fibroblast growth factors (FGFs) comprise a large family of growth factors, regulating diverse biological processes including cell proliferation, migration, and differentiation. Each FGF binds to a set of FGF receptors to initiate certain intracellular signaling molecules. Accumulated evidence suggests that in early development and adult state of vertebrates, FGFs also play exclusive and context dependent roles. Although FGFs have been the focus of research for therapeutic approaches in cancer, cardiovascular disease, and metabolic syndrome, in this review, we mainly focused on their role in germ layer specification and axis patterning during early vertebrate embryogenesis. We discussed the functional roles of FGFs and their interacting partners as part of the gene regulatory network for germ layer specification, dorsal-ventral (DV), and anterior-posterior (AP) patterning. Finally, we briefly reviewed the regulatory molecules and pharmacological agents discovered that may allow modulation of FGF signaling in research.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Camadas Germinativas/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Vertebrados/metabolismo , Animais , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/embriologia , Humanos , Modelos Biológicos , Ligação Proteica , Receptores de Fatores de Crescimento de Fibroblastos/genética , Vertebrados/embriologia , Vertebrados/genética
6.
Dev Biol ; 477: 273-283, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34118273

RESUMO

The vertebrate retina contains an array of neural circuits that detect distinct features in visual space. Direction-selective (DS) circuits are an evolutionarily conserved retinal circuit motif - from zebrafish to rodents to primates - specialized for motion detection. During retinal development, neuronal subtypes that wire DS circuits form exquisitely precise connections with each other to shape the output of retinal ganglion cells tuned for specific speeds and directions of motion. In this review, we follow the chronology of DS circuit development in the vertebrate retina, including the cellular, molecular, and activity-dependent mechanisms that regulate the formation of DS circuits, from cell birth and migration to synapse formation and refinement. We highlight recent findings that identify genetic programs critical for specifying neuronal subtypes within DS circuits and molecular interactions essential for responses along the cardinal axes of motion. Finally, we discuss the roles of DS circuits in visual behavior and in certain human visual disease conditions. As one of the best-characterized circuits in the vertebrate retina, DS circuits represent an ideal model system for studying the development of neural connectivity at the level of individual genes, cells, and behavior.


Assuntos
Retina/embriologia , Retina/fisiologia , Vertebrados/fisiologia , Vias Visuais , Animais , Humanos , Neurogênese , Neurônios/fisiologia , Nistagmo Patológico/genética , Retina/citologia , Células Ganglionares da Retina/fisiologia , Sinapses , Vertebrados/embriologia
7.
Development ; 148(7)2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33789914

RESUMO

Smooth muscle cells (SMCs) represent a major structural and functional component of many organs during embryonic development and adulthood. These cells are a crucial component of vertebrate structure and physiology, and an updated overview of the developmental and functional process of smooth muscle during organogenesis is desirable. Here, we describe the developmental origin of SMCs within different tissues by comparing their specification and differentiation with other organs, including the cardiovascular, respiratory and intestinal systems. We then discuss the instructive roles of smooth muscle in the development of such organs through signaling and mechanical feedback mechanisms. By understanding SMC development, we hope to advance therapeutic approaches related to tissue regeneration and other smooth muscle-related diseases.


Assuntos
Desenvolvimento Embrionário , Músculo Liso/crescimento & desenvolvimento , Miócitos de Músculo Liso/fisiologia , Vertebrados/crescimento & desenvolvimento , Animais , Animais Geneticamente Modificados , Sistema Cardiovascular , Diferenciação Celular/fisiologia , Trato Gastrointestinal , Pulmão , Mesoderma , Músculo Liso/citologia , Músculo Liso/embriologia , Músculo Liso Vascular/embriologia , Músculo Liso Vascular/crescimento & desenvolvimento , Miócitos de Músculo Liso/citologia , Organogênese/fisiologia , Sistema Respiratório , Vertebrados/embriologia
8.
J Vis Exp ; (168)2021 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-33720141

RESUMO

Somitogenesis is a hallmark of vertebrate embryonic development. For years, researchers have been studying this process in a variety of organisms using a wide range of techniques encompassing ex vivo and in vitro approaches. However, most studies still rely on the analysis of two-dimensional (2D) imaging data, which limits proper evaluation of a developmental process like axial extension and somitogenesis involving highly dynamic interactions in a complex 3D space. Here we describe techniques that allow mouse live imaging acquisition, dataset processing, visualization and analysis in 3D and 4D to study the cells (e.g., neuromesodermal progenitors) involved in these developmental processes. We also provide a step-by-step protocol for optical projection tomography and whole-mount immunofluorescence microscopy in mouse embryos (from sample preparation to image acquisition) and show a pipeline that we developed to process and visualize 3D image data. We extend the use of some of these techniques and highlight specific features of different available software (e.g., Fiji/ImageJ, Drishti, Amira and Imaris) that can be used to improve our current understanding of axial extension and somite formation (e.g., 3D reconstructions). Altogether, the techniques here described emphasize the importance of 3D data visualization and analysis in developmental biology, and might help other researchers to better address 3D and 4D image data in the context of vertebrate axial extension and segmentation. Finally, the work also employs novel tools to facilitate teaching vertebrate embryonic development.


Assuntos
Padronização Corporal , Imageamento Tridimensional/métodos , Vertebrados/anatomia & histologia , Vertebrados/embriologia , Animais , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/diagnóstico por imagem , Desenvolvimento Embrionário , Imunofluorescência , Camundongos Knockout , Fatores de Transcrição da Família Snail/deficiência , Fatores de Transcrição da Família Snail/metabolismo , Software , Fatores de Tempo , Fixação de Tecidos , Tomografia Óptica
9.
Curr Top Dev Biol ; 141: 173-205, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33602488

RESUMO

During the course of evolution, animals have become increasingly complex by the addition of novel cell types and regulatory mechanisms. A prime example is represented by the lateral neural border, known as the neural plate border in vertebrates, a region of the developing ectoderm where presumptive neural and non-neural tissue meet. This region has been intensively studied as the source of two important embryonic cell types unique to vertebrates-the neural crest and the ectodermal placodes-which contribute to diverse differentiated cell types including the peripheral nervous system, pigment cells, bone, and cartilage. How did these multipotent progenitors originate in animal evolution? What triggered the elaboration of the border during the course of chordate evolution? How is the lateral neural border patterned in various bilaterians and what is its fate? Here, we review and compare the development and fate of the lateral neural border in vertebrates and invertebrates and we speculate about its evolutionary origin. Taken together, the data suggest that the lateral neural border existed in bilaterian ancestors prior to the origin of vertebrates and became a developmental source of exquisite evolutionary change that frequently enabled the acquisition of new cell types.


Assuntos
Evolução Biológica , Invertebrados/embriologia , Crista Neural/citologia , Vertebrados/embriologia , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Cordados não Vertebrados/embriologia , Ectoderma/citologia , Embrião não Mamífero/citologia , Crista Neural/metabolismo , Placa Neural/metabolismo
10.
Curr Top Dev Biol ; 141: 207-239, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33602489

RESUMO

Modern vertebrates consist of two sister groups: cyclostomes and gnathostomes. Cyclostomes are a monophyletic jawless group that can be further divided into hagfishes and lampreys, which show conspicuously different developmental and morphological patterns. However, during early pharyngula development, there appears to be a stage when the embryos of hagfishes and lampreys resemble each other by showing an "ancestral" craniofacial pattern; this pattern enables morphological comparison of hagfish and lamprey craniofacial development at late stages. This cyclostome developmental pattern, or more accurately, this developmental pattern of the jawless grade of vertebrates in early pharyngula was very likely shared by the gnathostome stem before the division of the nasohypophyseal placode led to the jaw and paired nostrils. The craniofacial pattern of the modern jawed vertebrates seems to have begun in fossil ostracoderms (including galeaspids), and was completed by the early placoderm lineages. The transition from jawless to jawed vertebrates was thus driven by heterotopy of development, mainly caused by separation and shift of ectodermal placodes and resultant ectomesenchymal distribution, and shifts of the epithelial-mesenchymal interactions that underlie craniofacial differentiation. Thus, the evolution of the jaw was not a simple modification of the mandibular arch, but a heterotopic shift of the developmental interactions involving not only the mandibular arch, but also the premandibular region rostral to the mandibular arch.


Assuntos
Evolução Biológica , Feiticeiras (Peixe)/anatomia & histologia , Lampreias/anatomia & histologia , Vertebrados , Animais , Embrião não Mamífero , Fósseis , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Feiticeiras (Peixe)/embriologia , Lampreias/embriologia , Adeno-Hipófise/embriologia , Crânio/anatomia & histologia , Vertebrados/anatomia & histologia , Vertebrados/embriologia
12.
Dev Biol ; 475: 245-255, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33548210

RESUMO

The neural crest is a migratory stem cell population that contributes to various tissues and organs during vertebrate embryonic development. These cells possess remarkable developmental plasticity and give rise to many different cell types, including chondrocytes, osteocytes, peripheral neurons, glia, melanocytes, and smooth muscle cells. Although the genetic mechanisms underlying neural crest development have been extensively studied, many facets of this process remain unexplored. One key aspect of cellular physiology that has gained prominence in the context of embryonic development is metabolic regulation. Recent discoveries in neural crest biology suggest that metabolic regulation may play a central role in the formation, migration, and differentiation of these cells. This possibility is further supported by clinical studies that have demonstrated a high prevalence of neural crest anomalies in babies with congenital metabolic disorders. Here, we examine why neural crest development is prone to metabolic disruption and discuss how carbon metabolism regulates developmental processes like epithelial-to-mesenchymal transition (EMT) and cell migration. Finally, we explore how understanding neural crest metabolism may inform upon the etiology of several congenital birth defects.


Assuntos
Desenvolvimento Embrionário/fisiologia , Crista Neural/citologia , Crista Neural/embriologia , Animais , Carbono/metabolismo , Diferenciação Celular/fisiologia , Movimento Celular/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Glicólise/fisiologia , Humanos , Crista Neural/metabolismo , Neurogênese/genética , Neurogênese/fisiologia , Vertebrados/embriologia
13.
J Fish Biol ; 98(4): 906-918, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31820456

RESUMO

Most extant vertebrates display a high variety of tooth and tooth-like organs (odontodes) that vary in shape, position over the body and nature of composing tissues. The development of these structures is known to involve similar genetic cascades and teeth and odontodes are believed to share a common evolutionary history. Gene expression patterns have previously been compared between mammalian and teleost tooth development but we highlight how the comparative framework was not always properly defined to deal with different tooth types or tooth developmental stages. Larger-scale comparative analyses also included cartilaginous fishes: sharks display oral teeth and dermal scales for which the gene expression during development started to be investigated in the small-spotted catshark Scyliorhinus canicula during the past decade. We report several descriptive approaches to analyse the embryonic tooth and caudal scale gene expressions in S. canicula. We compare these expressions wih the ones reported in mouse molars and teleost oral and pharyngeal teeth and highlight contributions and biases that arise from these interspecific comparisons. We finally discuss the evolutionary processes that can explain the observed intra and interspecific similarities and divergences in the genetic cascades involved in tooth and odontode development in jawed vertebrates.


Assuntos
Evolução Biológica , Elasmobrânquios/classificação , Odontogênese/genética , Vertebrados/classificação , Vertebrados/genética , Animais , Elasmobrânquios/embriologia , Elasmobrânquios/genética , Perfilação da Expressão Gênica , Camundongos , Tubarões/embriologia , Dente/embriologia , Vertebrados/embriologia
14.
Int J Dev Biol ; 65(4-5-6): 263-273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930349

RESUMO

The internalization of multi-cellular tissues is a key morphogenetic process during animal development and organ formation. A good example of this is the initial stages of vertebrate central nervous system formation whereby a transient embryonic structure called the neural plate is able to undergo collective cell rearrangements within the dorsal midline. Despite the fact that defects in neural plate midline internalization may result in a series of severe clinical conditions, such as spina bifida and anencephaly, the biochemical and biomechanical details of this process remain only partially characterized. Here we review the main cellular and molecular mechanisms underlying midline cell and tissue internalization during vertebrate neural tube formation. We discuss the contribution of collective cell mechanisms including convergence and extension, as well as apical constriction facilitating midline neural plate shaping. Furthermore, we summarize recent studies that shed light on how the interplay of signaling pathways and cell biomechanics modulate neural plate internalization. In addition, we discuss how adhesion-dependent cell-cell contact appears to be a critical component during midline cell convergence and surface cell contraction via cell-cell mechanical coupling. We envision that more detailed high-resolution quantitative data at both cell and tissue levels will be required to properly model the mechanisms of vertebrate neural plate internalization with the hope of preventing human neural tube defects.


Assuntos
Placa Neural , Tubo Neural , Vertebrados/embriologia , Animais , Morfogênese , Placa Neural/embriologia , Tubo Neural/embriologia , Neurulação
15.
Int J Dev Biol ; 65(4-5-6): 357-364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930350

RESUMO

Cell differentiation, proliferation, and morphogenesis are generally driven by instructive signals that are sent and interpreted by adjacent tissues, a process known as induction. Cell recruitment is a particular case of induction in which differentiated cells produce a signal that drives adjacent cells to differentiate into the same type as the inducers. Once recruited, these new cells may become inducers to continue the recruitment process, closing a feed-forward loop that propagates the growth of a specific cell-type population. So far, little attention has been given to cell recruitment as a developmental mechanism. Here, we review the components of cell recruitment and discuss its contribution to development in three different examples: the Drosophila wing, the vertebrate inner ear, and the mammalian thyroid gland. Finally, we posit some open questions about the role of cell recruitment in organ patterning and growth.


Assuntos
Drosophila , Mamíferos , Morfogênese , Vertebrados , Animais , Drosophila/embriologia , Orelha Interna/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Mamíferos/embriologia , Glândula Tireoide/embriologia , Vertebrados/embriologia , Asas de Animais/embriologia
16.
Int J Dev Biol ; 65(4-5-6): 251-261, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32930355

RESUMO

The development of multicellular organisms involves three main events: differentiation, growth, and morphogenesis. These processes need to be coordinated for a correct developmental program to work. Mechanisms of cell segregation and the formation of boundaries during development play essential roles in this coordination, allowing the generation and maintenance of distinct regions in an organism. These mechanisms are also at work in the nervous system. The process of regionalization involves first the patterning of the developing organism through gradients and the expression of transcription factors in specific regions. Once different tissues have been induced, segregation mechanisms may operate to avoid cell mixing between different compartments. Three mechanisms have been proposed to achieve segregation: (1) differential affinity, which mainly involves the expression of distinct pools of adhesion molecules such as members of the cadherin superfamily; (2) contact inhibition, which is largely mediated by Eph-ephrin signaling; and (3) cortical tension, which involves the actomyosin cytoskeleton. In many instances, these mechanisms collaborate in cell segregation. In the last three decades, there have been several advances in our understanding of how cell segregation and boundaries participate in the development of the nervous system. Interestingly, as in other aspects of development, the molecular players are remarkably similar between vertebrates and invertebrates. Here we summarize the main concepts of cell segregation and boundary formation, focusing on the nervous system and highlighting the similarities between vertebrate and invertebrate model organisms.


Assuntos
Efrinas , Sistema Nervoso/embriologia , Organogênese , Actomiosina , Animais , Invertebrados/embriologia , Vertebrados/embriologia
17.
Dev Dyn ; 250(1): 39-59, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32406962

RESUMO

In vertebrates, the trunk consists of the musculoskeletal structures of the back and the ventrolateral body wall, which together enclose the internal organs of the circulatory, digestive, respiratory and urogenital systems. This review gives an overview on the development of the thoracic and abdominal wall during amniote embryogenesis. Specifically, I briefly summarize relevant historical concepts and the present knowledge on the early embryonic development of ribs, sternum, intercostal muscles and abdominal muscles with respect to anatomical bauplan, origin and specification of precursor cells, initial steps of pattern formation, and cellular and molecular regulation of morphogenesis.


Assuntos
Parede Abdominal/embriologia , Parede Torácica/embriologia , Vertebrados/embriologia , Músculos Abdominais/embriologia , Animais , Humanos , Músculos Intercostais/embriologia , Costelas/embriologia , Esterno/embriologia
19.
Development ; 147(21)2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023886

RESUMO

The vertebrate body plan is characterized by the presence of a segmented spine along its main axis. Here, we examine the current understanding of how the axial tissues that are formed during embryonic development give rise to the adult spine and summarize recent advances in the field, largely focused on recent studies in zebrafish, with comparisons to amniotes where appropriate. We discuss recent work illuminating the genetics and biological mechanisms mediating extension and straightening of the body axis during development, and highlight open questions. We specifically focus on the processes of notochord development and cerebrospinal fluid physiology, and how defects in those processes may lead to scoliosis.


Assuntos
Padronização Corporal , Vertebrados/embriologia , Animais , Morfogênese , Notocorda/embriologia , Escoliose/embriologia , Escoliose/patologia , Coluna Vertebral/anormalidades , Coluna Vertebral/embriologia , Coluna Vertebral/patologia
20.
Int J Dev Biol ; 64(7-8-9): 433-443, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33063837

RESUMO

The neural crest (NC) is a transitory embryonic structure of vertebrates that gives rise to an astonishing variety of derivatives, encompassing both neural and mesenchymal cell types. Neural crest cells (NCCs) are an excellent model to study how environmental factors modulate features such as cell multipotentiality and differentiation. Tests with multifunctional substrates that allow NCCs to express their full potential, while promoting cell subcloning, are needed to advance knowledge about NCC self-renewal and to foster future biotechnological approaches. Here we show that a self-assembled peptide named PuraMatrixTM is an excellent substrate that allows the differentiation of NCCs based on the identification of seven different cell types. Depending on the PuraMatrixTM concentration employed, different frequencies and quantities of a given cell type were obtained. It is noteworthy that an enormous quantity and diversity of mesenchymal phenotypes, such as chondrocytes, could be observed. The quantity of adipocytes and osteocytes also increased with the use of mesenchymal differentiation factors (MDF), but PuraMatrixTM alone can support the appearance of these mesenchymal cell types. PuraMatrixTM will promote advances in studies related to multipotentiality, self-renewal and control of NCC differentiation, since it is an extremely simple and versatile material which can be employed for both in vivo and in vitro experiments.


Assuntos
Diferenciação Celular/fisiologia , Autorrenovação Celular/fisiologia , Células-Tronco Mesenquimais/fisiologia , Crista Neural/fisiologia , Peptídeos/metabolismo , Adipócitos/citologia , Adipócitos/fisiologia , Animais , Células Cultivadas , Condrócitos/citologia , Condrócitos/fisiologia , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/fisiologia , Crista Neural/citologia , Osteócitos/citologia , Osteócitos/fisiologia , Codorniz/embriologia , Codorniz/metabolismo , Vertebrados/embriologia , Vertebrados/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...